
© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.

eFax Developer™

Java User Guide for Inbound Processing

Version 2.0

Revision Date: 05/01/2014

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
2

Contents

WELCOME .. 4

CONTENTS AT A GLANCE .. 4

PRODUCT INTRODUCTION ... 5

EFAX DEVELOPER™ INBOUND OVERVIEW... 5
COMPONENTS ... 5

Software Developer’s Kit (SDK)... 5
com.efaxdeveloper.util-2.0.x ... 5
commons-codec-1.6 .. 5
InboundRequest (object) ... 5
Barcode (object).. 5
Barcode Recognition with DataMatrix Barcode Symbology (optional) ... 6
User Defined Field Handling (optional)... 6
Page Splitting (optional)... 6
XSD (XML Schema Definition) ... 6
eFax Developer™ Online Interface.. 6
UserName and Password validation... 6

PRODUCT INTEGRATION... 7

INTEGRATION REQUIREMENTS ... 7
INTEGRATION PLANNING.. 7

PROGRAMMING.. 8

CLIENT-SIDE PROGRAMMING OVERVIEW... 8
USING EFAX DEVELOPER’S INBOUNDREQUEST OBJECT ... 8
DATE FORMAT SPECIFICATION ... 9
METHOD MAPPING ... 10

Accessor Method Mapping (InboundRequest Object)... 10
Accessor Method Mapping (Barcode Object)... 13

CODE SAMPLES... 14

PARSING INBOUND REQUEST (GENERAL FLOW)... 14
PARSING FOR INBOUND METADATA ... 15
PARSING FOR BINARY IMAGE ... 16
PARSING FOR BARCODE METADATA .. 17
PARSING FOR USER DEFINED FIELDS.. 18

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
3

 Notice

In all communications concerning this documentation, please refer to the revision date displayed on the

front cover of this user’s guide.

Copyright

The use, disclosure, reproduction, modification, transfer, or transmittal of this work for any purpose in

any form or by any means without the written permission of j2 Global, Inc. is strictly prohibited.

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
4

Welcome

Welcome to eFax Developer’s Java User Guide for Inbound Processing. This guide was designed to

assist you in integrating eFax Developer™ into your current inbound processing.

Users who wish to “cut to the chase” can skip directly to the Programming section as a quick-start.

Contents at a glance

• Product Introduction will provide an introduction to eFax Developer™ Inbound

• Product Integration will provide information on using eFax Developer™ SDKs

• Programming will provide essential information for the client-side programmer

• Code Samples will provide code samples for accessing the InboundRequest object

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
5

Product Introduction

eFax Developer™ Inbound Overview

eFax Developer™ is an online interface used in conjunction with the eFax Developer™ client-side API.

The client-side process is divided into inbound and outbound processing. This documentation will cover

client-side inbound processing in its entirety.

Based on XML technology, eFax Developer™ gives clients the ability to have inbound faxes forwarded via

an HTTP(S) POST request to a desired URL address. The POST will contain an XML-formatted argument

representing data specific to the inbound fax received.

Clients will establish a procedure that will accept and process the request then return a response indicating

that the POST request was successfully received.

Components

Software Developer’s Kit (SDK)

The eFax Developer™ SDK contains everything the client programmer will need to create a seamless easy

to use interface to eFax Developer™.

Components found within the SDK are separated into inbound and outbound functionality. This document

will focus on inbound processing only.

com.efaxdeveloper.util-2.0.x

The com.efaxdeveloper.util-2.0.x.jar file is the client-side API library. This Java™ Archive (JAR) file

contains the core classes required to interface with eFax Developer™.

commons-codec-1.6

The commons-codec-1.6.jar file contains the Apache Commons Codec, a required component to

successfully interface with eFax Developer™.

InboundRequest (object)

InboundRequest is the main object class used by the client’s inbound process.

Barcode (object)

The Barcode object is used by clients who are set to receive barcodes as part of their inbound fax. When a

barcode is encountered, the InboundRequest object will return an ArrayList of one-to-many Barcode

objects. The client can easily retrieve data for each barcode returned through their Barcode object instance.

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
6

Barcode Recognition with DataMatrix Barcode Symbology (optional)

Based on client account settings, fax images can be analyzed for barcodes. If this option is selected, the

XML-formatted data will contain additional elements that hold the results of this analysis. Due to its

reliability and robustness, the 2-dimentional DataMatrix symbology was chosen as our default.

Capable of encoding all 128 ASCII characters along with a number of different character sets, DataMatrix

can accommodate up to 500 MB per square inch with a data capacity of 3,116 digits or up to 2,335 ASCII

characters. DataMatrix barcodes have a high degree of redundancy and resists printing defects which make

them the perfect match for fax image processing.

User Defined Field Handling (optional)

Based on a client’s account settings, eFax Developer™ may generate a number of user defined field

name/value pairings. If this feature is used, the InboundRequest object will return a Map object containing

each name/value pair retrieved. Clients that desire further information regarding this special feature should

contact eFax Developer’s Customer Support Group.

Page Splitting (optional)

Based on client account settings, a multi-page fax image can be split out and returned as multiple single-

page fax images. Clients who choose this option will receive XML-formatted data containing elements

representing each page as a separate Base64 encoded container. Clients that desire further information

regarding this special feature should contact eFax Developer’s Customer Support Group.

XSD (XML Schema Definition)

To ensure data integrity, the InboundRequest object can be set to validate the inbound request against a

client-side XSD schema. A sample schema is provided as part of the SDK.

eFax Developer™ Online Interface

Clients can change various inbound settings through eFax Developer™ online by clicking the “Settings”

icon located on any page of the interface. Go to https://secure.efaxdeveloper.com to log into the eFax

Developer™ online interface.

UserName and Password validation

eFax Developer™ will always send a username and password as part of the XML POST. As an additional

security measure, clients may change their XSD appropriately to validate the username and password.

Clients that perform username and password validation will be responsible for keeping their XSD in sync

with any username and password changes made online via the eFax Developer™ online interface.

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
7

Product Integration

Integration Requirements

Applications that use the com.efaxdeveloper.util-2.0.x API must meet the following requirements.

• JDK 1.5 or greater is required

• Apache Commons Codec 1.6 or later (commons-codec-1.6.jar is included with our SDK

package)

Integration Planning

To successfully integrate with eFax Developer™, it is important to have the appropriate tools as well as a

project plan prior to attempting integration. The following is provided to assist you in the integration

planning process.

• Contact eFax Developer™ Support to set up your account. Optional barcode recognition

and/or user defined field handling should be discussed if desired.

• Log into the eFax Developer™ online interface to set your inbound settings as desired

• Unzip the SDK into a folder of your choosing

• Add the com.efaxdeveloper.util-2.0.x.jar and commons_codec-1.6.jar to your CLASSPATH

• Carefully review this documentation, sample code and Javadoc found within the SDK folder

• Develop the client-side process to receive the XML POST

• Test your application’s integration with eFax Developer™

• Make your application live

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
8

Programming

Client-Side Programming Overview

The following is provided as a high-level overview of expected client-side processing.

• Create an application that accepts a URL-encoded HTTP(S) POST containing a single

name/value pair where the parameter name equals “xml” and the parameter value contains the

XML-formatted data. Pass the XML-formatted data to an instance of the InboundRequest

object. Retrieve the fax data using the object’s various getter methods. Generate an HTML

response of “Post Successful” back to eFax Developer™.

Using eFax Developer’s InboundRequest object

The following is provided as a more in-depth overview of the expected client-side processing.

• Retrieve the “xml” parameter from the HTTP(S) POST as you would normally do in your

application environment.

• Establish a print output as you would normally do to send a response to a browser.

• Instantiate the InboundRequest object using the appropriate constructor method. During client

testing, constructor methods that accept file input can be used to read XML from a specified

file. Sample XML is included as part of this SDK for client reference and testing.

• Use the InboundRequest accessor/getter methods to retrieve the fax specific data. Please

review the upcoming section regarding Accessor Method Mapping.

• Clients with user defined fields can retrieve them from the getUserFields() accessor method.

The getUserFields() method will return a Map which can be spun through to retrieve the user

defined field name/value pairs received.

• Clients set to interpret barcodes can retrieve them from the getBarcodes() accessor method.

The getBarcodes() method will return an ArrayList of one-to-many Barcode objects. The

ArrayList can be processed to retrieve and store information specific to each barcode image.

• Use the “getDocumentAsFile (String documentPath)” method when a physical copy of the fax

document is desired. The “getDocumentAsFile (String documentPath)” method will write the

physical file to the specified path. The file will be written using the fax name and file type

returned in the XML POST. All “getDocumentAsXXXX()” calls are optionally used by

clients who wish to store a copy of the physical fax on their server.

• Clients with page splitting turned on can use the “getPagesAsFiles (String pagePath)” method

when a physical copy of each fax page is desired. The “getPagesAsFiles (String pagePath)”

method will write each page of a physical fax to the specified path as its own file. Files will

be written using the fax name returned in the XML POST and a suffix representing the page

depicted. Calls to “getPagesAsFiles” or any “getPageAsXXXX()” methods are optionally

used by clients who wish to store a copy of the physical fax on their server.

• Send an HTML response to the browser containing the string “Post Successful” anywhere in

the HTML body.

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
9

Date Format Specification

Dates returned from the InboundRequest object can be formatted as desired by the client process. A number

of easy to use preset values have been established. In addition to the following preset values, clients have

the ability to specify their own settings based on java.text.SimpleDateFormat syntax. The following listing

represents each preset date format code used by the InboundRequest object. Each example assumes an

input date of “01/01/2005 12:30:00 PM.”

 DF_01 will return “01/01/2005 13:30:00” (this is the default)

 DF_02 will return “01/01/2005 13:30”

DF_03 will return “01/01/2005 12:30:00 PM”

DF_04 will return “01/01/2005 12:30 PM”

DF_05 will return “01/01/2005”

DF_06 will return “2005/01/01 13:30:00”

DF_07 will return “2005/01/01 13:30”

DF_08 will return “2005/01/01 12:30:00 PM”

DF_09 will return “2005/01/01 12:30 PM”

DF_10 will return “2005/01/01”

DF_11 will return “January 1, 2005 13:30:00”

DF_12 will return “January 1, 2005 13:30”

DF_13 will return “January 1, 2005 12:30:00 PM”

DF_14 will return “January 1, 2005 12:30 PM”

DF_15 will return “January 1, 2005”

DF_16 will return “Jan 1, 2005 13:30:00”

DF_17 will return “Jan 1, 2005 13:30”

DF_18 will return “Jan 1, 2005 12:30:00 PM”

DF_19 will return “Jan 1, 2005 12:30 PM”

DF_20 will return “Jan 1, 2005”

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
10

Method Mapping

Accessor Method Mapping (InboundRequest Object)

Method Returns Length Description/Values

getAccountID()

String 10 eFax Developer™ account

identifier.

getANI()

String 25 The automatic number

identification (caller id)

contains the calling party’s fax

number.

getBarcodes()

ArrayList N/A The ArrayList will contain

one-to-many Barcode objects.

getBarcodesByPage(int page)

ArrayList N/A The ArrayList will contain

one-to-many Barcode objects

from the specified page.

getBarcodesRead() String 5 The number of barcodes

successfully interpreted within

the inbound fax document.

getCSID()

String 50 The station identifier, when

supplied by the receiving fax

machine upon successful

transmission.

getDateReceivedAsDate() Date N/A The original fax received date

returned as a Date object.

Pacific Time Zone

getDateReceivedAsString() String 19 The original fax received date

in “MM/dd/yyyy HH:mm:ss”

(24 hour) default format.

Pacific Time Zone

getDateReceivedAsString(String format) String Varies The original fax received date

in the specified date format.

Pacific Time Zone

getDocumentAsBase64() String Varies A Base64 encoded string

representation of the files

contents.

Clients with page splitting will

call the getPageAsBase64()

method instead.

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
11

Method Returns Length Description/Values

getDocumentAsBytes() byte[] Varies A byte[] array representation

of the files contents.

Clients with page splitting will

call the getPageAsBytes()

method instead.

getDocumentAsFile(String documentPath)

void N/A Upon successful completion, a

file will be created within the

designated path using the file

name and file type received in

the XML POST.

Clients with page splitting will

call the getPagesAsFiles()

method instead.

getFaxName()

String 50 The actual fax name given to

this fax by eFax Developer™

as changed by the client.

getFileType()

String 3 “pdf”

“tif”

The document type as stored

based on the “Inbound File

Format” setting.

getMCFID() String 8 eFax Developer™ fax ID.

getNumberDialed() String 10 The fax number that was

dialed.

getPageAsBase64(int page) String Varies A Base64 encoded string

representation of the page

number specified.

getPageAsBytes(int page) byte[] Varies A byte[] array representation

of the page number specified.

getPageAsFile(String pagePath, int page) void N/A Upon successful completion, a

file will be created within the

designated path for the page

number specified.

getPageCount()

String 5 The number of pages received.

getPagesAsFiles(String pagePath)

void N/A Upon successful completion, a

file will be created within the

designated path for each page

of the physical fax.

getPassword()

String 50 User Password

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
12

Method Returns Length Description/Values

getRequestDateAsDate()

Date N/A The XML generation date

returned as a Date object.

Pacific Time Zone

getRequestDateAsString() String 19 The XML generation date in

“MM/dd/yyyy HH:mm:ss” (24

hour) default format.

Pacific Time Zone

getRequestDateAsString(String format) String Varies The XML generation date in

the specified date format.

Pacific Time Zone

getRequestType()

String 15 “New Inbound”

“Manual Repost”

The type of request that

generated the XML POST.

getStatus()

String 5 Numeric field indicating the

fax status. “0” indicates a

successful transmission while

all other values indicate an

error code which can be cross-

referenced with am eFax

Developer™ supplied table.

getUserFields()

Map N/A The Map object contains user

field name/value pairings.

getUserFieldsRead() String 5 The number of user field

name/value pairs returned.

getUserName()

String 50 User Name

hasBarcodes() Boolean N/A The Boolean value received

indicates whether or not

barcodes where returned.

hasUserFields() Boolean N/A The Boolean value received

indicates whether or not user

fields where returned.

isPageSplitting()

Boolean N/A The Boolean value received

indicates whether or not page

splits were returned.

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
13

Accessor Method Mapping (Barcode Object)

Method Returns Length Description/Values

getKey()

String Varies The interpreted barcode value

getReadSequence()

String 3 A per-page sequence number

given to each barcode as it is

read on a given page.

getReadDirection() String 50 “2-Dimentional”

“Left/Right”

“Top/Bottom”

“Right/Left”

“Bottom/Top”

The read direction used to

interpret the barcode stored

within this container.

getSymbology()

String 30 The symbology or protocol

used to generate the barcode

stored within this container.

getPageNumber()

String 5 The physical page location of

the barcode stored within this

container.

getXStartPointA()

String 8 Coordinate grid x-axis for

starting edge point A.

getYStartPointA()

String 8 Coordinate grid y-axis for

starting edge point A.

getXStartPointB()

String 8 Coordinate grid x-axis for

starting edge point B.

getYStartPointB()

String 8 Coordinate grid y-axis for

starting edge point B.

getXEndPointA()

String 8 Coordinate grid x-axis for

ending edge point A.

getYEndPointA()

String 8 Coordinate grid y-axis for

ending edge point A.

getXEndPointB()

String 8 Coordinate grid x-axis for

ending edge point B.

getYEndPointB()

String 8 Coordinate grid y-axis for

ending edge point B.

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
14

Code Samples

Parsing Inbound Request (General Flow)

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Begin building the HTML response

 out.println("<html>");

 out.println("<head><title>InboundRequestServlet</title></head>");

 out.println("<body>");

 // Retrieve the inbound "xml" parameter value from the request

 String xml = request.getParameter("xml");

 try {

 // Establish a new InboundRequest instance

 InboundRequest req = new InboundRequest(xml);

 // Once the InboundRequest instance has been established, various

 // Metadata elements can be retrieved by your processing. A number of

 // options are available to you based on your account settings. At any

 // point, your process can reject the request by throwing an Exception.

 // When barcode fields have been passed (optional account setting)

 if (req.hasBarcodes()) {

 // Process barcodes (see Parsing for Barcode Metadata)

 }

 // When user defined fields have been passed (optional account setting)

 if (req.hasUserFields()) {

 // Process user defined fields (see Parsing for User Defined Fields)

 }

 // If the inbound request passes your validation, respond back to eFax

 // Developer™ with a "Post Successful"

 out.println("<p>Post Successful</p>");

 }

 catch (Exception e) {

 out.println("<p>Post Failed!</p>");

 }

 catch (Error err) {

 out.println("<p>Post Failed!</p>");

 }

 finally {

 out.println("</body></html>");

 out.flush();

 out.close();

 }

 }

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
15

Parsing for Inbound Metadata

 // Retrieve the inbound "xml" parameter value from the request

 String xml = request.getParameter("xml");

 try {

 // Establish a new InboundRequest instannce

 InboundRequest req = new InboundRequest(xml);

 // Parse the InboundRequest

 System.out.println("UserName: " + req.getUserName());

 System.out.println("Password: " + req.getPassword());

 System.out.println("RequestDate: " + req.getRequestDateAsString());

 System.out.println("RequestType: " + req.getRequestType());

 System.out.println("AccountID: " + req.getAccountID());

 System.out.println("NumberDialed: " + req.getNumberDialed());

 System.out.println("DateReceived: " + req.getDateReceivedAsString());

 System.out.println("FaxName: " + req.getFaxName());

 System.out.println("FileType: " + req.getFileType());

 System.out.println("PageCount: " + req.getPageCount());

 System.out.println("CSID: " + req.getCSID());

 System.out.println("ANI: " + req.getANI());

 System.out.println("Status: " + req.getStatus());

 System.out.println("MCFID: " + req.getMCFID());

 }

 catch (Exception e) {}

 catch (Error err) {}

 }

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
16

Parsing for Binary Image

 // Retrieve the inbound "xml" parameter value from the request

 String xml = request.getParameter("xml");

 try {

 // Establish a new InboundRequest instannce

 InboundRequest req = new InboundRequest(xml);

 // When the client account does not return page splits (most likely)

 if (!req.isPageSplitting()) {

 // Decode the Base64 encoded document to a specified location. The

 // file will be stored to your specified path using the fax name

 // retrieved from the XML POST FaxName parameter. Note that you are

 // providing a directory path to a location where you would like the

 // physical file to be written. The following method call is not

 // required. If the following method is not called, a hard copy of the

 // physical image will not be generated on your server.

 req.getDocumentAsFile("C:\\testXML\\");

 }

 // Otherwise, the client account is set to return page splits

 else {

 // Write each page to a specified file path

 req.getPagesAsFiles("C:\\testXML\\");

 }

 }

 catch (Exception e) {}

 catch (Error err) {}

 }

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
17

Parsing for Barcode Metadata

 // Retrieve the inbound "xml" parameter value from the request

 String xml = request.getParameter("xml");

 try {

 // Establish a new InboundRequest instannce

 InboundRequest req = new InboundRequest(xml);

 // When barcode fields have been passed (optional account setting)

 if (req.hasBarcodes()) {

 // Establish a null Barcode reference

 Barcode b = null;

 // Establish a new ArrayList object to hold all Barcode objects. Use

 // the getBarcodesByPage(int) method to return all Barcode objects

 // from a specified page.

 ArrayList<Barcode> bars = new ArrayList<Barcode>(req.getBarcodes());

 // Establish an iterator Object

 Iterator<Barcode> iterator = bars.iterator();

 // Process each Barcode object

 while (iterator.hasNext()) {

 // Retrieve a Barcode object

 b = new Barcode(iterator.next());

 // Retrieve the Barcode object state

 System.out.println("Key: " + b.getKey());

 System.out.println("ReadSequence: " + b.getReadSequence());

 System.out.println("ReadDirection: " + b.getReadDirection());

 System.out.println("Symbology: " + b.getSymbology());

 System.out.println("PageNumber: " + b.getPageNumber());

 System.out.println("XStartPointA: " + b.getXStartPointA());

 System.out.println("XStartPointB: " + b.getXStartPointB());

 System.out.println("YStartPointA: " + b.getYStartPointA());

 System.out.println("YStartPointB: " + b.getYStartPointB());

 System.out.println("XEndPointA: " + b.getXEndPointA());

 System.out.println("XEndPointB: " + b.getXEndPointB());

 System.out.println("YEndPointA: " + b.getYEndPointA());

 System.out.println("YEndPointB: " + b.getYEndPointB());

 }

 }

 }

 catch (Exception e) {}

 catch (Error err) {}

 }

© 2014 j2 Global, Inc. All rights reserved.

j2® is a registered trademark of j2 Global, Inc.
18

Parsing for User Defined Fields

 // Retrieve the inbound "xml" parameter value from the request

 String xml = request.getParameter("xml");

 try {

 // Establish a new InboundRequest instannce

 InboundRequest req = new InboundRequest(xml);

 // When user defined fields have been passed (optional account setting)

 if (req.hasUserFields()) {

 // Establish a TreeMap object to hold the user name/value pairs

 Map<String, String> userFields =

 new TreeMap<String, String>(req.getUserFields());

 // Store the TreeMap contents to an ArrayList object for sorting

 List<String> keys = new ArrayList<String>(userFields.keySet());

 // Establish an Iterator object for the List object

 Iterator<String> iterator = keys.iterator();

 // Establish a String object to hold the user field name

 String fieldName = "";

 // Establish a String object to hold the user field value

 String fieldValue = "";

 // Spin through the list of user name/value pairs

 while (iterator.hasNext()) {

 // Store the field name value

 fieldName = iterator.next();

 // Store the field value

 fieldValue = userFields.get(fieldName);

 // Print the user name/value pairs received in the XML

 System.out.println(fieldName + ": " + fieldValue);

 }

 }

 }

 catch (Exception e) {}

 catch (Error err) {}

 }

