eFax Developer™
Java User Guide for Outbound Processing

Version 2.0

Revision Date: 05/01/2014

Contents

WELCOME 5
CONTENTS AT A GLANCEotiitiiiiiieietestente sttt ettt st sttt s a e s et a et besaeebeeae oo neneen 5
PRODUCT INTRODUCTION 6
EFAX DEVELOPER™ OUTBOUND OVERVIEWcoutiiiiiiiiniiniiiiiniieiiereieniestesre st s eseeeessesaesnesaeeneensennenennes 6
COMPONENTS ...ttt sttt ettt sa e bt b ettt et be s h e bt s ae e s s et et e ae st e b sae e st e st esse s et ebesaeeneeutennennennen 6
Software Developers Kit (SDK)ccocoiiiiiiiiiiiiiiiieeeeeeeeie ettt ettt 6
COM.EfaxXAeVelOPET.ULII-2.0.Xc.ccceruiiiiiiiieiei ettt et ettt s 6
COMMONS-COACC1.0 ..voeeeeeieeeeee et e ettt e e te e et e e e stte e e e taeeeastaeeeassseeeenssaaeassseeeansseeeenssseesansseeann 6
OutboundRequest and OutboundReSPONSE ODJECLS............c..ccuecuieeerieciieciieiieeieneeneeie e 6
DoOCUMENIBUNALET OBJECT......c...eoeeeiiiiieiiiieeet ettt ettt ettt sttt s sbte st e s sbaeebee s 6
EMATIBUNALET ODJECEc..ooeeiieiieiieieeeeeee ettt ettt e e 7
DiSPOSTIONCATCHET ODJECT........eeecueeeeieeeiiieeieeeie et ettt ettt ste e tee s ateestaesssbeeteessbesnseessbesseesssseenseen 7
StatusRequest and STAtUSRESPONSE ODJECEScccuveecueeeciieeiiieeiiieeiieesciieeiteesteesiaeesseesseesseesseessseesseenns 7
SOCUTTLY ettt ettt e ettt e e e att e e et e e e eatbe e e e abe e e e sttt e e eaabaeeeabeeesanbbeeeenabaeesnabaeeean 7

eFax Developer™ ONLINe INTETTACEcccueecuieeciieeiieeieesiieesieesieeesteesteesteesbeesseesebeessseesaseesaseens 7
CLIENE PFOSIlE....coueee ettt ettt ettt ettt e s e st e e st e e s abeesabeeesbeesabeessseessbaesssaesnsaeanseesaseesnseennses 7

XSD (XML SChemna Defilition)ccc.eeuueevueiiieeiieeiieeeiee sttt ste ettt ettt e st e st e s bt e st e saeeesanes 7
ACCOUNTE TACTIIfIET ...ttt et e et 7
PRODUCT INTEGRATION 8
INTEGRATION REQUIREMENTScceetiuttiieeeeeeeiitreeeeeeeeeaisseeeeeeeesaeisssseseseseasisssseseseseesanssssesesseesinsreseseseennes 8
INTEGRATION PLANNINGcueiiitiitiitietiete ettt ettt et e st ettt et e e s e b e e e neesnesenesaeesaeesaeenneennens 8
PROGRAMMING 9
THE “OUTBOUND REQUEST ..ovvvtiiiieiietiteeeeee e eeettte et e e e eeeeataaeeeeeeeeeeaaaaeeeeessessaaaseseeesseesasseeseesseenstreseaeseennns 9
THE “OUTBOUND RESPONSE”eiiiiiiiiiiintietieiteitet et sttt sttt sa e sttt s et ne s 9
THE “STATUS REQUEST ... ttteiiiieieieeiiteeee e e e eeeeiat et e e e e eeeae e et e e e eeestaaaeeeeeseeesataeeteeeeeessabraeeeeeeeesssraereeeeeeanns 10
THE “STATUS RESPONSE”iitiiiiiieiiiiitiie sttt ettt sttt st ettt sttt et et sae st s ene e esnenens 10
THE “FINAL DISPOSITIONoouiiiiiiiiiiintinesiteite ettt sttt sttt st s et saesae b saeene e e esnennens 11
DYNAMIC FAX HEADERS.......cutttiiiiiiiiiiittteeeeeeeeitteeeeeeeeetivaseeeeeeeessssssaseeessessssssassesssessssssaseeessesssssssseeeesanes 12
OVEFVEIEW ..veveeeeeeeiteeeetee e e tteeestate e ettt e eassaeeasssseeeassseeeassssaeeassseaeasssaeeaasssaeeanssaaeassssaeaanssaeeasssaeesnsseennn 12

@ VIATIADLESooeeeeeee ettt eee e ettt e e ettt e e sttt e e ettt e e estaeeesssseeeasssaeeasssaeessssaesasssaeeansssaesansseeann 12

FONE COMITOL ..ottt ettt e e et e e et e e et e e s asbeeesasaeesssaeeeansseeeennsaaeesssseesansseeennsses 13
ARGUMENT MAPPING.......ecutiiutiitetieitieite ettt et et enesete st e st et esteeaaesasesse e bee st eanesanesaeesaeesseenssennesunenneeneen 14
Outbound Request Mutator Methods (OutboundRequUest).................ccocoeeeveecuiecrenienienieeneenneenenn, 14
Outbound Response Accessor Methods (OutboundReSPONSe)..............ccccoeeeueecueecuencuenceeneeneenaeeneenn, 20
Status Request Mutator Methods (STATUSREGUEST)ceecueeeeueeeiiieiiieeieesieesteesaeesreesseesaesssseenanees 21
Status Response Accessor Methods (STAtUSRESPONSE)eevvueeecuieiiieeiiieiieeeieeeieesveesseesaessveenanees 22

Final Disposition Accessor Methods (DispositionCatCRET)...........cccuveecueescueeeiuiesiiesieesreeseeesveenenes 25
HTML RESPONSE 26
OUTBOUND RESPONSE HTMLoouiiiiiiiiiiiiiiicictcteie sttt s 26
STATUS RESPONSE HTMLoiiiiiiiiiiiiie ettt et e 27
CODE SAMPLES 29
OUTBOUND REQUEST ...cociiiiititiiieee e eecittteee e eeeeecttt e e e e e eeetaaaeeeeeeeeeetaaaeeeeeeeeesassaeeeeeeeeasrsseeaeeeeaaaraeseeeeeenas 29
STATUS REQUEST ...ceiiiiiiiiiitieee e e ettt e e ettt e e e e e eeetaaaeeeeeeeeeetasaeeeeeeeeetssaaaeeeeeeeisssseseeeesansssssseeaeeeeasnrnes 30
FINAL DISPOSITION (WITH DISPOSITIONCATCHERY)cceeiviireeiiieeesreeeesnreeessreeessssseessssseesssssesssssssessssssees 31
USER LEVEL ERROR MESSAGES 32

ERROR MESSAGES RETURNED BY EFAX DEVELOPER™ AUTHENTICATION
ERROR MESSAGES RETURNED BY XSD VALIDATION.......ccoiitiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e

Notice

In all communications concerning this documentation, please refer to the revision date displayed on the
front cover of this user’s guide.

Copyright

The use, disclosure, reproduction, modification, transfer, or transmittal of this work for any purpose in
any form or by any means without the written permission of j2 Global, Inc. is strictly prohibited.

Welcome

Welcome to eFax Developer’s Java User Guide for Outbound Processing. This guide was designed to
assist you in integrating eFax Developer™ into your current outbound processing.

Users who wish to “cut to the chase” can skip directly to Product Integration as a quick-start.

Contents at a glance

Product Introduction will provide an introduction to eFax Developer™ QOutbound
Product Integration will provide information on using eFax Developer™ SDKs
Programming will provide essential information for the client-side programmer
HTML Response will provide screen print examples of various HTML responses
Code Samples will provide basic examples of how the objects should be used

User Level Error Messages will cover common error messages and solutions

Product Introduction
eFax Developer™ Qutbound Overview

eFax Developer™ is an online interface used in conjunction with eFax Developer™ client-side APIs. The
client-side process is divided into inbound and outbound processing. This documentation will cover client-
side outbound processing in its entirety.

Based on XML technology, developers POST outbound requests to eFax Developer™ through components
found within our client-side Software Developers Kits (SDKs).

eFax Developer™ will authenticate the request, then immediately notify the client process whether or not
the outbound request was successfully received via an HTTP response.

Once validated, a fax transmission will be created and launched. Clients can be notified of a transmission’s
final disposition. Clients can control this notification through elements passed in the outbound request. A
client can suppress notification, or generate notification upon success, failure, or both.

Components

Software Developers Kit (SDK)

The eFax Developer™ SDK contains everything the client programmer will need to create a seamless easy
to use interface to eFax Developer™.

Components found within the SDK are separated into inbound and outbound functionality. This document
will focus on outbound processing only.

com.efaxdeveloper.util-2.0.x

The com.efaxdeveloper.util-2.0.x.jar file is the client-side API library. This Java™ Archive (JAR) file
contains the core classes required to interface with eFax Developer™.

commons-codec-1.6

The commons-codec-1.6.jar file contains the Apache Commons Codec, a required component to
successfully interface with eFax Developer™.

OutboundRequest and OutboundResponse objects

The OutboundRequest and OutboundResponse objects are used by the client-side process to submit fax
transmission to and manage responses from eFax Developer™.

DocumentBundler object

The DocumentBundler is used by the client-side process to bundle all documents for transmission. Once
loaded, the DocumentBundler is passed to the OutboundRequest instance via the setDocuments() method.

EmailBundler object

Similar in concept to the DocumentBundler, the EmailBundler is used by the client-side process to bundle
email addresses for final disposition notification processing. Once loaded, the EmailBundler is passed to
the OutboundRequest instance via the setDispositionsTo(EmailBundler) method.

DispositionCatcher object

If desired, eFax Developer™ can generate final disposition notifications to a client specified URL. The
DispositionCatcher is the interface between the client’s disposition endpoint and the eFax Developer™
outbound dispositions.

StatusRequest and StatusResponse objects

The StatusRequest and StatusResponse objects are used by the client-side process to submit status requests
to and manage responses from eFax Developer™.

Security

eFax Developer™ is designed with data security in mind. Requests are made using secure (HTTPS)
protocol ensuring sender and receiver are the only parties able to decode the request. Additionally, each
request will be authenticated against the requesting client’s profile and XSD (schemata).

eFax Developer™ Online Interface

Clients can change various outbound settings through eFax Developer™ online by clicking the “Settings”
icon located on any page of the interface. Go to https://secure.efaxdeveloper.com and log into the eFax
Developer™ online interface.

Client Profile

eFax Developer™ client profile will consist of a user name, password and a unique Account Identifier. If
desired, clients may choose to have all submitting IP Address’ validated as an additional layer of security.
Clients can access their profile via the eFax Developer™ online interface.

XSD (XML Schema Definition)

To ensure data integrity, eFax Developer™ will validate all requests against the client’s XSD file. XSD
files are client specific and generated at account setup time.

Account Identifier

Each client will be provided a unique Account Identifier. The Account Identifier is passed as part of the
request. eFax Developer™ will authenticate the Account Identifier against the requesting client’s profile.

Product Integration
Integration Requirements

Applications that use the com.efaxdeveloper.util-2.0.x API must meet the following requirements.
e JDK 1.5 or greater is required

e Apache Commons Codec 1.6 or later (commons-codec-1.6.jar is included with our SDK
package)

Integration Planning

To successfully integrate with eFax Developer™, it is important to have the appropriate tools as well as a
project plan prior to attempting integration. The following is provided to assist you in the integration
planning process.
e Contact eFax Developer™ Support to set up a client profile and receive a copy of the SDK
® Log into the eFax Developer™ online interface to set your outbound settings as desired
e Unzip the SDK into a folder of your choosing
e Add the com.efaxdeveloper.util-2.0.x.jar and commons-codec-1.6.jar to your CLASSPATH
e Carefully review this documentation, sample code and Javadoc found within the SDK folder
e Develop your outbound request processing
e Develop your “final disposition” processing (separate application flow if used)

e Test your application’s integration with eFax Developer™

e Make your application live

Programming

The “Outbound Request”

The OutboundRequest object is responsible for submitting fax requests to eFax Developer™ Outbound
Services. Clients can specify a number of varying parameters on a request-by-request basis. Clients can
specify final disposition notification be sent via email, or be posted to a client defined endpoint as desired.

It is recommended that clients review the OutboundRequestServlet sample code contained within the
Samples folder for a detailed example on setting up and submitting an “Outbound Request.”

The following is provided as a high-level overview of expected client-side “Outbound Request” processing.
For each outbound request:

e Instantiate an OutboundRequest instance

e Instantiate a DocumentBundler instance

® Add all documents to be faxed to the DocumentBundler

e Set the DocumentBundler to the OQutboundRequest instance

e Set the request arguments via the OutboundRequest object’s mutator methods

e Submit the outbound request using the object’s sendFax() method

® Process the OutboundResponse object returned by the sendFax() method

The “Outbound Response”

The OutboundResponse object is used to retrieve data elements returned in the HTTP response to the
OutboundRequest.sendFax() method call. The client process can easily retrieve data elements via the
OutboundResponse object’s accessor methods.

It is recommended that clients review the OutboundRequestServlet sample code contained within the
Samples folder for a detailed example on processing the HTTP response returned by eFax Developer™.

The following is provided as a high-level overview of expected client-side “Outbound Response”
processing.

For each outbound request:
® Process the OutboundResponse object returned by OutboundRequest.sendFax()

e If an HTML response was requested, retrieve the HTML from the getRawResponse() method
otherwise retrieve the data elements via the OutboundResponse object’s accesssor methods.

e If the OutboundRequest was rejected, where OutboundResponse.isApproved() returns false, it
is the client’s responsibility to “fix” user level errors before resubmitting fax requests.

The “Status Request”

The StatusRequest object is responsible for submitting status requests to eFax Developer™ Outbound
Services. Clients can provide their client-defined transmission identifier or the eFax Developer™ DOC
identifier to request the current status of a transmission.

It is recommended that clients review the StatusRequestServlet sample code contained within the Samples
folder for a detailed example on setting up and submitting a “Status Request.”

The following is provided as a high-level overview of expected client-side “Status Request” processing.

¢ Instantiate a StatusRequest instance
e Set the request arguments as required via the objects mutator methods
e Submit the status request using the object’s getStatus() method

® Process the StatusResponse object returned by the getStatus() method

The “Status Response”

The StatusResponse object is used to retrieve data elements returned in the HTTP response to the
StatusRequest.getStatus() method call. The client process can easily retrieve data elements via the
StatusResponse object’s accessor methods.

It is recommended that clients review the StatusRequestServlet sample code contained within the Samples
folder for a detailed example on processing the HTTP response returned by eFax Developer™.

The following is provided as a high-level overview of expected client-side “Status Response” processing.
For each status request:
® Process the StatusResponse object returned by StatusRequest.getStatus()

e If an HTML response was requested, retrieve the HTML from the getRawResponse() method
otherwise retrieve the data elements via the StatusResponse object’s accesssor methods.

o If the StatusRequest was rejected, where StatusResponse.isApproved() returns false, it is the
client’s responsibility to “fix” user level errors before resubmitting status requests.

10

The “Final Disposition”

If desired, eFax Developer™ can generate “final disposition” notifications via HTTP POST to a designated
URL as specified via the setDispositionsTo() method of the initial outbound request. eFax Developer™
will make an initial attempt to deliver this disposition. If delivery is not successful, eFax Developer™ will
retry the disposition until a total of 4 attempts have been made. With each attempt, an alert email will be
sent to the client’s primary email address until a confirmation (“Post Successful”) is received back from the
client-side “disposition response” process, or 4 total attempts have been tried.

If desired, eFax Developer™ can generate “final disposition” notifications to one-or-many email addresses
as indicated in the initial outbound request. If the email option is selected, the HTTP POST outbound
disposition will not be generated.

It is recommended that clients review the DispositionCatcherServlet sample code contained within the
Samples folder for a detailed example on setting up “Final Disposition” processing.

The following is provided as a high-level overview of expected client-side “Final Disposition” processing.

e Retrieve the “xml” argument from the “final disposition” HTTP POST.

e Instantiate an instance of the DispositionCatcher passing to it the XML string just retrieved.
e Retrieve the disposition values via the DispositionCatcher accessor methods.

e If desired, validate the final disposition’s username and password for security.

e Return an HTML response of “Post Successful” back to eFax Developer™.

11

Dynamic Fax Headers

Overview

eFax Developer™ allows clients the ability to override the application generated fax header. This section is
provided as a programmer’s reference to this optional feature.

The following line is an example of a dynamic fax header line with a static company name inserted:

"@DATE1 @TIME3 My Company Name @ROUTETO{26} @RCVRFAX Pg%P/@SPAGES"
That dynamic header line once converted will display as follows:

10/15/03 11:11AM My Company Name Recipient Name Company 8581234567 Pg 1/2
Dynamic Fax Headers are freeform; the client is free to format the line as desired. The maximum length of
this line is 80 characters for a single line. @ Variables can be inserted in no particular order or removed
completely. Static text can be added as desired, so “Pg 1/2” could have just as easily been made to display

as “Page 1 of 2" or just “Page 1.” In the above example, bolded text represents static text.

@Variables

The following describes variables available for use in the dynamic fax header string:

e @DATEX - from our server system date (Pacific Time)

O @DATEQ yyyymmdd (example: 20031015)

O @DATEIL mm/dd/yy (example: 10/15/03)

O @DATE2 dd/mm/yy (example: 15/10/03)

O @DATE3 dd/xx/yy (example: 15/0C/03)

O @DATE4 mm/dd/yyyy (example: 10/15/2003)

o @DATES dd mon yyyy (example: 15 Oct 2003)

o @DATES6 xxxxx dd, yyyy (example: October 15, 2003)
o @DATE7 yy mm dd (example: 03 10 15)

o @DATES yy-mm-dd (example: 03-10-15)

o @DATE9 yymmdd (example: 031015)

® @TIMEx — from our server system time (Pacific Time)

o @TIME1 hh:mm (example: 17:30)
o @TIME2 hh:mm:ss (example: 17:30:00)
o0 @TIMES3 hh:mmxx (example: 05:30PM)
o @TIME4 hhmm (example: 1730)

® @ROUTETO({n} — “Recipient Name Recipient Company” passed within the XML-formatted
argument. The number in brackets indicates the maximum width (characters) of this area within
the header.

® @RCVRFAX - “Recipient Fax” number passed within the XML-formatted argument.

® %P — Contains the current page number.

e @SPAGES - Contains the number of pages; including the cover sheet; to be sent.

12

Font Control

It is possible to control the font size within Dynamic Fax Headers through the use of one or many font
control variables. The following describes this feature.

® %nf—“n” contains a number (0 through 3) that indicates the font size. “0” is the default value with
each subsequent number indicating a slightly smaller font. Font control variables can be placed
anywhere within the fax header line. Any text following a font control variable will be affected
until another font control variable is encountered.

13

Argument Mapping

Outbound Request Mutator Methods (OQutboundRequest)

Method Required/Optional Type Length Description/Values

setAccountID Required Alphanumeric 10 Method used to set the
client's account identifier.

This value is provided at
setup time and is required for
authentication.

setConnectionTimeout | Optional Numeric Method used to control the
connection timeout for the
request in milliseconds.

A zero value is interpreted as
an infinite timeout.

setCustomerID Optional Alphanumeric 50 Method used to set a client
specified customer identifier.

The CustomerID is optional.
It is not required or validated
by eFax Developer™.

setDispositionsTo Optional EmailBundler N/A Method used to set the
disposition emails.

The EmailBundler object
contains all email addresses
chosen to receive final
disposition notifications.

setDispositionsTo Optional Alphanumeric 100 Method used to set the
disposition URL address.

The URL pointing to the
client endpoint that will
receive final disposition
POST requests from eFax
Developer™.

14

Method

Required/Optional

Type

Length

Description/Values

setDispositionLanguage

Optional

Alphanumeric

Method used to set the
desired disposition language.

Set one of the following ISO
639-1 language codes to
control final disposition
notification emails:

“en” English (default)
“de” German

“es” Spanish

“fr” French

“it” Italian

“nl” Dutch

“pI” Polish

“pt” Portuguese

setDispositionLevel

Optional

Alphanumeric

Method used to set the
disposition level.

“ERROR”
“SUCCESS”
“BOTH”
“NONE” (default)

Defines the level at which
final disposition notifications
are received. Clients can
suppress the notification, or
generate the notification upon
success, failure or both.

setDocuments

Required

DocumentBundler

N/A

Method used to set the
documents to be faxed.

The DocumentBundler
contains all documents
chosen for this transmission.

eFax Developer™ accepts
the following file extensions:

doc docx
xIs xIsx
ppt pptx

html/htm vt
jpgljpeg txt

pdf rtf
snp png
gif

15

Method

Required/Optional

Type

Length

Description/Values

setFaxHeader

Optional

Alphanumeric

80

Method used to override the
default fax header.

Client defined fax header to
be used during this
transmission.

Please review the section on
“Dynamic Fax Headers” for
more information.

setFineResolution

Optional

Boolean

N/A

Method to override the
default “standard” resolution.

Passing true to this method
will override the default
resolution and cause eFax
Developer™ to set the
transmission resolution to
“fine” instead of “‘standard.”

Transmissions requested with
"fine" resolution will incur a

price premium.

setHighPriority

Optional

Boolean

N/A

Method used to override the
default ("normal") priority.

Passing true to this method
will override the default
priority and cause eFax
Developer™ to set the
transmission priority to
"high" instead of "normal."

Transmissions requested with
"high" priority will incur a
price premium.

16

Method

Required/Optional

Type

Length

Description/Values

setHTMLResponse

Optional

Boolean

N/A

Method used to indicate an
HTML response is desired.

Passing true to this method
will override the default
setting and cause eFax
Developer™ to respond to
client requests with formatted
HTML instead of XML.

setNoDuplicates

Optional

Boolean

N/A

Method used to prevent
duplicate transmission
identifiers from being
submitted.

Passing true to this method
will override the default
setting and cause eFax
Developer™ to verify that
the transmission identifier
has not already been used by
a previous transmission.

When enabled, eFax
Developer™ will fail the
transmission if a duplicate
transmission identifier exists.

setPassword

Required

Alphanumeric

20

Method used to set the
client’s password.

This value is provided at
setup time and is required for
authentication.

setReadTimeout

Optional

Numeric

Method used to control the
read timeout for the response
in milliseconds.

A zero value is interpreted as
an infinite timeout.

setRecipientCompany

Optional

Alphanumeric

50

The recipient’s company
name when supplied will be
merged into the fax header
line.

Please review the section on
“Dynamic Fax Headers”
when using that option.

17

Method

Required/Optional

Type

Length

Description/Values

setRecipientFax

Required

Alphanumeric

25

The recipient’s fax number.

Designate international fax
numbers by using the “011”
international dialing prefix or
start the fax number with a
plus sign (“+7).

setRecipientName

Optional

Alphanumeric

50

The recipient’s name when
supplied will be merged into
the fax header line.

Please review the section on
“Dynamic Fax Headers”
when using that option.

setSelfBusy

Optional

Boolean

N/A

Method used to change the
"self-busy" option.

Passing false to this method
will override the default
"self-busy" option and cause
eFax Developer™ to set the
transmission "self-busy”
option to "disable" instead of
"enable."

eFax Developer™ prevents
multiple fax channels from
simultaneously dialing the
same fax number. Disabling
this option will allow a single
fax number to be dialed
simultaneously by multiple
fax channels.

setTransmissionID

Optional

Alphanumeric

15

Method used to set the client
generated transmission
identifier.

This value is a unique client
specified number used to
identify a transmission. This
optional value can be
searched for during status
request processing.

This value should be a unique
alphanumeric value when
used.

18

Method

Required/Optional

Type

Length

Description/Values

setTSID

Optional

Alphanumeric

20

Method used to set the
Transmitting Subscriber
Identification or TSID.

eFax Developer™ will
transmit the account’s fax
number as the TSID.

The value passed to this
method overrides the default
by substituting the value
provided.

setUserName

Required

Alphanumeric

20

Method used to set the
client’s user name.

This value is provided at
setup time and is required for
authentication.

19

Outbound Response Accessor Methods (OutboundResponse)

Method

Always filled

Type

Length

Description/Values

getDOCID

No

Alphanumeric

8

eFax Developer™
transmission identifier.

getErrorLevel

Upon error

Alphanumeric

“User”
“System”

Defines the level of error. A
“User” level can be handled
by the client, while “System”
generated errors will require
eFax Developer™ Support
intervention.

getErrorMessage

Upon error

Alphanumeric

ANY

The generated error message.

getRawResponse

Yes

Alphanumeric

ANY

The raw response returned by
eFax Developer™.

getTransmissionID

No

Alphanumeric

15

Client transmission identifier

isHTMLResponse

Yes

Boolean

N/A

Indication whether or not the
response was returned as
HTML.

isApproved

Yes

Boolean

N/A

Indication whether or not the
request was approved by
eFax Developer™.

20

Status Request Mutator Methods (StafusRequest)

Method

Required/Optional

Type

Length

Description/Values

setAccountID

Required

Alphanumeric

10

Method used to set the
client's account identifier.

This value is provided at
setup time and is required for
authentication.

setConnectionTimeout

Optional

Numeric

Method used to control the
connection timeout for the
request in milliseconds.

A zero value is interpreted as
an infinite timeout.

setDOCID

Optional

Alphanumeric

eFax Developer™
transmission identifier.

setHTMLResponse

Optional

Boolean

N/A

Method used to indicate an
HTML response is desired.

Passing true to this method
will override the default
setting and cause eFax
Developer™ to respond to
client requests with formatted
HTML instead of XML.

setPassword

Required

Alphanumeric

20

Method used to set the
client’s password.

This value is provided at
setup time and is required for
authentication.

setReadTimeout

Optional

Numeric

Method used to control the
read timeout for the response
in milliseconds.

A zero value is interpreted as
an infinite timeout.

setTransmissionID

Optional

Alphanumeric

15

Client transmission identifier

setUserName

Required

Alphanumeric

20

Method used to set the
client’s user name.

This value is provided at
setup time and is required for
authentication.

21

Status Response Accessor Methods (StatusResponse)

Method

Always Filled

Type

Length

Description/Values

getBaudRate

No

Alphanumeric

8

Baud Rate used for this fax
transmission.

May or may not exist depending
on the current status of the
transmission.

getClassification

Alphanumeric

ANY

The status classification.

May or may not exist depending
on the current status of the
transmission.

getCustomerID

No

Alphanumeric

50

The client specified customer
identifier.

getDOCID

Alphanumeric

eFax Developer™ transmission
identifier.

getDuration

Alphanumeric

10

Actual duration in minutes for
this fax transmission.

May or may not exist depending
on the current status of the
transmission.

getErrorLevel

Upon error

Alphanumeric

‘6USer79
“System”

Defines the level of error. A
“User” level can be handled by
the client, while “System”
generated errors will require
eFax Developer™ Support
intervention.

getErrorMessage

Upon error

Alphanumeric

ANY

The generated error message.

22

Method

Always Filled

Type

Length

Description/Values

getLastDate

No

Alphanumeric

10

Last attempt date for this fax.
May or may not exist depending
on the current status of the

transmission.

Format is mm/dd/yyyy.

getLastTime

Alphanumeric

Last attempt time for this fax.

May or may not exist depending
on the current status of the
transmission.

Time zone is PST. Format is
hh:mm:ss (24 hour).

getMessage

Yes

Alphanumeric

100

The status message for this fax
transmission.

getNextDate

Alphanumeric

10

Next attempt date for this fax.
May or may not exist depending
on the current status of the

transmission.

Format is mm/dd/yyyy.

getNextTime

Alphanumeric

Next attempt time for this fax.

May or may not exist depending
on the current status of the
transmission.

Time zone is PST. Format is
hh:mm:ss (24 hour).

getOutcome

Alphanumeric

100

The outcome text message.

May or may not exist depending
on the current status of the
transmission.

23

Method

Always Filled

Type

Length

Description/Values

getPagesScheduled

No

Alphanumeric

ANY

Scheduled number of pages for
this fax transmission.

May or may not exist depending
on the current status of the
transmission.

getPagesSent

Alphanumeric

ANY

Number of pages successfully
sent for this fax transmission.

May or may not exist depending
on the current status of the
transmission.

getRawResponse

Yes

Alphanumeric

ANY

The raw response returned by
eFax Developer™.

getRecipientCompany

No

Alphanumeric

20

The recipient’s company name.

getRecipientFax

Alphanumeric

25

The recipient’s fax number.

getRecipientName

Alphanumeric

50

The recipient’s name.

getRemote CSID

Alphanumeric

ANY

The CSID transmitted to.

May or may not exist depending
on the current status of the
transmission.

getRetries

Alphanumeric

Actual number of retry attempts
for this fax transmission.

May or may not exist depending
on the current status of the
transmission.

getTransmissionID

No

Alphanumeric

15

Client transmission identifier

isHTMLResponse

Yes

Boolean

N/A

Indication whether or not the
response was returned as
HTML.

isApproved

Yes

Boolean

N/A

Indication whether or not the
request was approved by eFax
Developer™.

24

Final Disposition Accessor Methods (DispositionCatcher)

Method Always filled Type Length Description/Values

getCompletionDate Yes Alphanumeric 20 Fax completion date and
time.

Time zone is PST. Format is
yyyy-mm-dd hh:mm:ss (24

hour).
getDOCID Yes Alphanumeric 8 eFax Developer™
transmission identifier.
getDuration No Alphanumeric 5 Transmission time in
minutes.
getFaxNumber Yes Alphanumeric 25 Recipient’s fax number.
getFaxStatus Yes Numeric 5 Numeric field indicating the

fax status. “0” indicates a
successful transmission while
all other values indicate an
error code which can be
cross-referenced with an
eFax Developer™ supplied

table.
getNumberOfRetries No Numeric 2 Number of times the fax was
attempted before success or
failure.
getPagesSent No Numeric 3 The number of pages sent.
getPassword Yes Alphanumeric 20 User Password
getRecipientCSID No Alphanumeric 20 The station identifier, when

supplied by the receiving fax
machine upon successful

transmission.
getTransmissionID No Alphanumeric 15 Client transmission identifier
getUserName Yes Alphanumeric 20 User Name

25

HTML Response

Outbound Response HTML

By default, eFax Developer™ responds to all requests it receives with an XML-formatted response. If an
HTML-formatted response is desired, set the OutboundRequest.setHTMLResponse(boolean) to true.

When the OutboundRequest.setHTMLResponse(boolean) method is set to true, eFax Developer™ will
respond back to the sendFax() request with an HTML-formatted response. Client processing can retrieve
the HTML response from the OutboundResponse object via the getRawResponse() accessor method.

When an HTML-formatted response is requested, client processing will be limited to the HTML response
returned by the getRawResponse() method. With the exception of Boolean accessors isSHTMLResponse()

or isApproved(), attempting to retrieve response data via an accessor method will result in an empty string
being returned when an HTML response is indicated.

The following example shows an HTML-formatted response returned on a successful sendFax() request.

“ http://secure.efaxdeveloper.com/EFax_WebFax.serv - Microsoft Interne == x|

JFiIe Edit Wiew Favorites Tools Help ﬁ

J = Back - = - @ it | @Search [5] Favarites @Media a | %v =1 - @

| ddress [€] httpjjsscure, sfadeveloper, comEFax_WebFas serv =] & |J Links >
eFax Developer™ Outhound =
Post Si ful for tr ission ID»: 1000

Your DOC Identifier is : 31861569

Copyright @ 2008 j2 Global Communicstions, Inc. All rights reserved.

El
|&] pane ’_’_’_ & Internct
© 2014 2 Global, Inc. All rights reserved. 26

J2® is a registered trademark of j2 Global, Inc.

Status Response HTML

By default, eFax Developer™ responds to all requests it receives with an XML-formatted response. If an
HTML-formatted response is desired, set the StatusRequest.setHTMLResponse(boolean) to true.

When the StatusRequest.setHTMLResponse(boolean) method is set to true, eFax Developer™ will respond
back to the getStatus() request with an HTML-formatted response. Client processing can retrieve the
HTML-formatted response from the StatusResponse object via the getRawResponse() accessor method.

When an HTML-formatted response is requested, client processing will be limited to the HTML response
returned by the getRawResponse() method. With the exception of Boolean accessors isHTMILResponse()

or isApproved(), attempting to retrieve response data via an accessor method will result in an empty string
being returned when an HTML response is indicated.

The following example shows an HTML-formatted response returned on a successful getStatus() request.

a http://secure.efandeveloper.com/EFax_WebFax.sery - Microsoft Internet Explorer provided by Data On Call == ﬂ

JFI|E Edit Wiew Favorites Tools Help ﬁ

J Bk ~ = - (D fat | Qisearch [GFavorkes PMeda (% | - S - =

Jnddress Iﬁj http:ffsecure, faxdeveloper, comfEF ax_\WebFax sery d PGU HLinks e

eFax Developer™ Outhound =

Status Response for transmission ID: 1000
Your transmmission has completed.

DOC Tdentifier - 818361569

Fax Number : 9299900089
Becipient : Testl

Company : eFax Developer (Test1)
Status Classification : "Success”
Status Outcome : "Success”
Last Attempt Date - 03/06/2006
Last Atternpt Time : 12:10:24
Pages Scheduled : 1

Pages Jent: 1

Baud Rate : 24000

Duration (in minutes) - 0.3
Mumber of Retries : 1

Remote CSID : "Test Cutbound”

|@ Done ’_’_’_ # Internet

© 2014 2 Global, Inc. All rights reserved. 27
J2® is a registered trademark of j2 Global, Inc.

The following example shows an HTML-formatted response returned on a failed sendFax() request.

3 ht secure.efaxdeveloper.com,/EFax_WebFax.sery - Microsoft Internet Explorer provided by Data On Call =& 5[

File Edt View Favorites Tools Help ﬁ

|
J GmBack + = - (2 at | isearch [EFavorites {Media (% | By S N |
|

Address [{&] hitpsfsecure. faxdevelapsr, com(EF sx_WebFas, sery =] & |J Links >
eFax Developer™ Outhound =
Post Unsuccessful!

Tour request has faded due to mvalid data.
Please refer to our documentation prior to resubmitting

Error Level: User
Error Message: Account identifier argument was not passed

Please contact ug at (858) 427-6500 if you continue to encounter errors.

Copytight @ 2008 j2 Global Communications, Inc All rights reserved,

E
[Eowme T me

© 2014 2 Global, Inc. All rights reserved. 28
J2® is a registered trademark of j2 Global, Inc.

Code Samples

Outbound Request

// Instantiate a new OutboundRequest object
OutboundRequest req = new OutboundRequest();

// Set your eFax Developer™ outbound account identifier (required)
req.setAccountID("1234567890");

// Set your eFax Developer™ outbound user name (required)
req.setUserName("abcdefg");

// Set your eFax Developer™ outbound password (required)
req.setPassword("hijklmn");

// Set the recipient fax number for this transmission (required)
req.setRecipientFax("8001234567");

// Set your desired disposition level

reqg.setDispositionLevel (OutboundRequest.DL _BOTH) ;

// Set your desired endpoint for final disposition POST
req.setDispositionsTo ("https://your.endpoint.com/dispo.jsp");

// Instantiate a DocumentBundler object
DocumentBundler docs = new DocumentBundler();

try {
// Add document(s) to the DocumentBundler object by path

docs.add("C:\\your\\document\\path\\docl.doc");
docs.add("C:\\your\\document\\path\\doc2.doc");

// Set the documents to be faxed for this transmission (required)
req.setDocuments (docs) ;

// POST the outbound transmission request to eFax Developer™
OutboundResponse resp = req.sendFax();

// When eFax Developer™ approved the outbound request
if (resp.isApproved()) {
// Parse the response
System.out.println("POST received for DOCID: " + resp.getDocID());
}
// Otherwise, eFax Developer™ rejected the outbound request
else {
// Parse the error response
System.out.println("POST failed: " + resp.getErrorMessage());

}

¥
catch (Exception e) {}

catch (Error err) {}

© 2014 2 Global, Inc. All rights reserved. 29
J2® is a registered trademark of j2 Global, Inc.

Status Request

// Instantiate a new StatusRequest object
StatusRequest req = new StatusRequest();

// Set your eFax Developer™ outbound account identifier (required)
req.setAccountID("1234567890");

// Set your eFax Developer™ outbound user name (required)
req.setUserName("abcdefg");

// Set your eFax Developer™ outbound password (required)
req.setPassword("hijklmn");

// Search by your transmission identifier
req.setTransmissionID("1234567890");

try {

// Retrieve the transmission status from eFax Developer™
StatusResponse resp = req.getStatus();

// When eFax Developer™ approved the status request
if (resp.isApproved()) {
// Parse the response
System.out.println("POST received for DOCID: " + resp.getDocID());
}
// Otherwise, eFax Developer™ rejected the status request
else {
// Parse the error response
System.out.println("POST failed: " + resp.getErrorMessage());
}

}
catch (Exception e) {}

catch (Error err) {}

© 2014 2 Global, Inc. All rights reserved.
J2® is a registered trademark of j2 Global, Inc.

30

Final Disposition (with DispositionCatcher)

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

}

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println("<html>");
out.println("<head><title>DispositionCatcherServlet</title></head>");
out.println("<body>");

// Retrieve the disposition "xml"

String xml = request.getParameter("xml");

try {

// Establish a DispositionCatcher object

DispositionCatcher dc =

// Parse the DispositionCatcher

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

parameter value from the request

new DispositionCatcher(xml);

out.println("");

out.println("------m-mm o ");
out.println("UserName: " + dc.getUserName());
out.println("Password: " + dc.getPassword());
out.println("TransmissionID: " + dc.getTransmissionID());
out.println("DOCID: " + dc.getDOCID());
out.println("FaxNumber: " + dc.getFaxNumber());
out.println("CompletionDate: " + dc.getCompletionDate());
out.println("FaxStatus: " + dc.getFaxStatus());
out.println("RecipientCSID: " + dc.getRecipientCSID());
out.println("Duration: " + dc.getDuration());
out.println("PagesSent: " + dc.getPagesSent());
out.println("NumberOfRetries: " + dc.getNumberOfRetries());
out.println(M---------m oo ");

// Reply back to eFax Developer™ indicating
// has been successfully received by your processing.
out.println("Post Successful");

}

catch (Exception e) {
e.printStackTrace();
e.printStackTrace(out);

}

catch (Error err) {
err.printStackTrace();
err.printStackTrace(out);

}

finally {

out.println("</body></html>");
out.flush();
out.close();

}

that the final disposition

31

User Level Error Messages

Requests sent to eFax Developer™ will be validated against an XSD before being authenticated by eFax
Developer™ processing. If the request fails validation or authentication, a response will be returned back to
the client indicating why the request failed. It is up to the client to decide how these error messages should
be handled.

Error Messages Returned by eFax Developer™ Authentication

The following error messages are returned by eFax Developer™ authentication. When a request is received
by eFax Developer™, the request will be authenticated against the client’s online profile. If the request
fails authentication for any reason, an error message will be returned to the client.

Error Message: Account identifier argument was not passed.

Problem:
The account identifier was not included as part of the request.
Solution:

Be sure that the account identifier is passed to the OutboundRequest or StatusRequest object’s
setAccountID() method.

Error Message: Login not successful. UserName, Password or IP Address failed
login validation.

Problem:
The account could not be validated using the username, password or IP address provided.
Solution:

Log in at https://secure.efaxdeveloper.com.

From the “Services” page, click on the eFax Developer link.

From the “Inbox” page, click the “Settings” icon.

From the “Outbound Settings” tab, make sure the username and password is in sync with the
values passed to the OutboundRequest or StatusRequest object’s setUserName() and

setPassword() methods.

If the account is configured to validate sending IP addresses, make sure the sending IP is included
in the list of Approved IP Addresses displayed on the “Outbound Settings” tab.

32

Error Message: Request content length (nnnnnnnn) has exceeded our 30MB ceiling.

Problem:
The total content length of the POST request exceeded 30MB and was rejected.
Solution:

Break up the transmission into separate requests if possible. Please contact eFax Developer™
Support if you continue to encounter this exception.

Error Message: This account is no longer active. Please contact eFax Developer
Customer Support.

Problem:
The account is no longer active or closed.
Solution:

Contact eFax Developer™ Customer Support for further assistance.

Error Message: Demo account has reached its maximum allotment. Please contact
eFax Developer Customer Support.

Problem:
A demo account is expired or reached the maximum number of allowed faxes for the demo.
Solution:

Contact eFax Developer™ Customer Support for further assistance.

Error Message: This account has been placed on hold. Please contact eFax
Developer Customer Support.

Problem:
The account is on hold.
Solution:

Contact eFax Developer™ Customer Support for further assistance.

33

Error Message: Requests from this account are prohibited. Please contact eFax
Developer Customer Support.

Problem:

The account has been blocked from submitting requests.

The account is continuously submitting bad requests or bad attachments, or is misusing the service
in some manner. This is an extreme measure imposed by eFax Developer™ Support after all other
avenues of communication with the primary account holder have been exhausted.

Solution:

Contact eFax Developer™ Customer Support for further assistance.

Error Message: TransmissionID required when NoDuplicates option is enabled.

Problem:

The OutboundRequest object’s setNoDuplicates() method was set to true but a transmission
identifier was not passed to the object’s setTransmissionID() method.

Solution:

Set the OutboundRequest object’s setNoDuplicates() method to false, or set a non-empty
transmission identifier to the object’s setTransmissionID() method.

Error Message: Duplicate TransmissionID not allowed when NoDuplicates option is
enabled.

Problem:

The OutboundRequest object’s setNoDuplicates() method was set to true and the transmission
identifier passed to the object’s setTransmissionID() method was already submitted.

Solution:

Handle as desired in the client-side process.

Error Message: A transmission or DOC identifier is required for a status request.

Problem:
The status request did not include a transmission or DOC identifier.
Solution:

Set a non-empty transmission or DOC identifier via the OutboundRequest object’s
setTransmissionID() or setDOCID() methods prior to submitting the status request.

34

Error Messages Returned by XSD Validation

The following error messages are returned by eFax Developer™ XSD validation. XML that contains
unexpected or unrecognized parameters, or contains values that fail to meet criteria defined in this
document will be rejected.

Error Message: the value is not a member of the enumeration: (“XXX/XXX/XXX”)

Problem:
An unrecognized parameter value was passed in the request.
Solution:

Make sure parameters passed to the OutboundRequest object’s setDispositionLevel() method meet
specifications outlined in this document.

Consider using predefined OutboundRequest. DL_XXXX variables when specifying disposition
levels. For example, setDispositionLevel(OutboundRequest.DL_Error) can be used to return
disposition notifications on transmission errors only.

Error Message: the value is not a member of the enumeration.

Problem:

An unrecognized parameter value was passed in the request.

Solution:

Make sure known file types are being passed to the DocumentBundler object’s add() method and
that parameters passed to the OutboundRequest object’s setDispositionLanguage() method meet

specifications outlined in this document.

Consider using predefined OutboundRequest.ISO_XXXX variables when specifying a disposition

language. For example, setDispositionLanguage(OutboundRequest.ISO_ITALIAN) can be used to
return final disposition emails in Italian if desired.

Error Message: the length of the value is nnn, but the required minimum is nnn.

Problem:

The OutboundRequest object’s setRecipientFax() value did not meet minimum length
requirements.

Solution:

Make sure the value passed to the OutboundRequest object’s setRecipientFax() method meets the
minimum required length outlined in this document.

35

Error Message: the length of the value is nnn, but the required maximum is nnn.

Problem:

A value was passed that exceeded a maximum length requirement.

Solution:

Make sure values passed to these methods meet the specifications outlined in this document.
setCustomerID()

setTransmissionID()

setDispositionsTo(String)
setRecipientFax()

Error Message: Content of element “XXXX” is incomplete
Problem:
The element specified in the error message did not contain a value.
Solution:

Make sure a value is being passed via the referenced setter method of the OutboundRequest object.

36

