eFax Developer™

Java User Guide for Inbound Processing

Version 2.0

Revision Date: 05/01/2014

Contents

WELCOME 4
CONTENTS AT A GLANCEoouiiiiiiietieti et ettt ettt et et s st e sat e st ess e esaeeuae s e esse e beesneennesanesaeesaeesaeenneenneans 4
PRODUCT INTRODUCTION 5
EFAX DEVELOPER™ INBOUND OVERVIEW.......c..coctiiteiieientenitenteenteetteneessesinesseesseeseenessnesaeesaeesseeseeneens 5
COMPONENTSc.eouiteuiieiteete et st e st et ettt e e sae e be e st e st e s e e aae s et esae e st emstemaeeuaesas e se e seenseeanesanesunesaeesaeenseennens 5
Software Developer’s Kit (SDK)........oucuiucuieeiieiiieeieeeiieeitesieeeiteesteessseesseesseesseesseessseesssesssseessseenns 5
COM.fAXACVEIOPET.ULII-2.0.X ..oceeeeiieeieeeiieeiee et et e e et s e e aeesibeesbeesnbeessbeessbeessseesssaessseesnseessseenns 5
COMIMONS-COACC1.0 ...ttt sttt ettt st s bt ettt et e e saaesbees 5
INDOUNAREGUEST (ODJECT)vooneeeieeeeeeie ettt ettt ettt e ete et e st e etaessaeenbaeesstesnseesssesnseesnsseenseens 5
BATCOAE (ODJECT)..veenevieiieeiii ettt ettt ettt e ate ettt e ate s te e st e entaessaeensaesnssesnseesssesnseeesseenseen 5
Barcode Recognition with DataMatrix Barcode Symbology (Optional)ccceeeevveecveecceeescvennnnnnn 6

User Defined Field Handling (OPtiORQL)...............c.ccccocuiriiiniiiniinieiiieieeeceieeeieeteeee e 6

Page Splitting (OPLIONAL)...........c...ccoovuiiiiiriiriiiiieieee ettt st e 6

XSD (XML SChemna Defilition)cc.ceuueevueiiiieiieesiteeiee sttt ettt ettt e st e st e s e st e sveesanes 6

eFax Developer™ Online INTEIfaCE.................cccocuiecuiniiniieiiiiiieiieeieeeeeeeeett et 6
UserName and Password VALIAQTION.cccooueeiecueeeeiciiieeeeieeescieeeesieeeessveesssseessssseeessssseessnsseeens 6
PRODUCT INTEGRATION 7
INTEGRATION REQUIREMENTSccceeiiiiuiiieieeeeaiittrereeeeeeaintsaseseeeesssssssesesesssssssssssessssssssssssseessssssssssseesesannes 7
INTEGRATION PLANNINGcuuttiiiiiieiiiiiitieeeeeeeiiittereeeeeeesatrareeeeeasssnssssesesesssssssseseeesessssssssseeessesssssssseeessanes 7
PROGRAMMING 8
CLIENT-SIDE PROGRAMMING OVERVIEW......ccuiiiiiiiiiiiiiiinieniieiesiteiteeetesteseesie e eseesnessesaesnesaseneensennennennes 8
USING EFAX DEVELOPER’S INBOUNDREQUEST OBJECTccccevviieetiieeeitrieeeeireeeeareeeeeereeeeessesessassessnenesaans 8
DATE FORMAT SPECIFICATIONeottiitieitieiienieeieeieeteenesinesieesaeesseesseenneeunesanesseesseesneennesanesanesaeesaeenneenseans 9
METHOD MAPPING ..ottt ettt ettt et st st e st et et eaaeease b e e b e esneeanesanesaeesaeenseennsennesanesneeneen 10
Accessor Method Mapping (InboundRequest ODJECT)..............cceeviecinieineenieciieieeieneeneeseeseeene s 10
Accessor Method Mapping (Barcode ODJECt)...............coccoveiienieniiiiniinieiieeieeieeeeeeesee e 13
CODE SAMPLES 14
PARSING INBOUND REQUEST (GENERAL FLOW)ccciiiiiiiiiiieeiiie ettt etee et eeeae e e et e e e enae e e eneneas 14
PARSING FOR INBOUND METADATAuuvtteiieeieeiiiteeeeeeeeetttteeeeeesessssseeeeessassnssassesssessssssseesessssossssseesesannes 15
PARSING FOR BINARY IMAGEcoiiiiiiiiiiiiii e ettt e e e ettt eee e e e e eettvee e e e e s esnaatsaeeeeesesssnssaeeeassesnsssnseeeesannes 16
PARSING FOR BARCODE METADATAuttttiiiiiiiiitieeeeeeeeiittreeeeeeeesisssseeeeessessnssassesssessssssssessssesssssssseesesannes 17
PARSING FOR USER DEFINED FIELDS......ccceiiiiiiiiiiiiieeeiieiiieeeeeeeeeiiteeeeeesesierreeeeessesssnssaseessssssnsssesesessannes 18

Notice

In all communications concerning this documentation, please refer to the revision date displayed on the
front cover of this user’s guide.

Copyright

The use, disclosure, reproduction, modification, transfer, or transmittal of this work for any purpose in
any form or by any means without the written permission of j2 Global, Inc. is strictly prohibited.

Welcome

Welcome to eFax Developer’s Java User Guide for Inbound Processing. This guide was designed to
assist you in integrating eFax Developer™ into your current inbound processing.

Users who wish to “cut to the chase” can skip directly to the Programming section as a quick-start.

Contents at a glance

Product Introduction will provide an introduction to eFax Developer™ Inbound
Product Integration will provide information on using eFax Developer™ SDKs
Programming will provide essential information for the client-side programmer
Code Samples will provide code samples for accessing the InboundRequest object

Product Introduction
eFax Developer™ Inbound Overview

eFax Developer™ is an online interface used in conjunction with the eFax Developer™ client-side API.
The client-side process is divided into inbound and outbound processing. This documentation will cover
client-side inbound processing in its entirety.

Based on XML technology, eFax Developer™ gives clients the ability to have inbound faxes forwarded via
an HTTP(S) POST request to a desired URL address. The POST will contain an XML-formatted argument
representing data specific to the inbound fax received.

Clients will establish a procedure that will accept and process the request then return a response indicating
that the POST request was successfully received.

Components

Software Developer’s Kit (SDK)

The eFax Developer™ SDK contains everything the client programmer will need to create a seamless easy
to use interface to eFax Developer™.,

Components found within the SDK are separated into inbound and outbound functionality. This document
will focus on inbound processing only.

com.efaxdeveloper.util-2.0.x

The com.efaxdeveloper.util-2.0.x.jar file is the client-side API library. This Java™ Archive (JAR) file
contains the core classes required to interface with eFax Developer™.

commons-codec-1.6

The commons-codec-1.6.jar file contains the Apache Commons Codec, a required component to
successfully interface with eFax Developer™.

InboundRequest (object)
InboundRequest is the main object class used by the client’s inbound process.
Barcode (object)

The Barcode object is used by clients who are set to receive barcodes as part of their inbound fax. When a
barcode is encountered, the InboundRequest object will return an ArrayList of one-to-many Barcode
objects. The client can easily retrieve data for each barcode returned through their Barcode object instance.

Barcode Recognition with DataMatrix Barcode Symbology (optional)

Based on client account settings, fax images can be analyzed for barcodes. If this option is selected, the
XML-formatted data will contain additional elements that hold the results of this analysis. Due to its
reliability and robustness, the 2-dimentional DataMatrix symbology was chosen as our default.

Capable of encoding all 128 ASCII characters along with a number of different character sets, DataMatrix

can accommodate up to 500 MB per square inch with a data capacity of 3,116 digits or up to 2,335 ASCII

characters. DataMatrix barcodes have a high degree of redundancy and resists printing defects which make
them the perfect match for fax image processing.

User Defined Field Handling (optional)

Based on a client’s account settings, eFax Developer™ may generate a number of user defined field
name/value pairings. If this feature is used, the InboundRequest object will return a Map object containing
each name/value pair retrieved. Clients that desire further information regarding this special feature should
contact eFax Developer’s Customer Support Group.

Page Splitting (optional)
Based on client account settings, a multi-page fax image can be split out and returned as multiple single-
page fax images. Clients who choose this option will receive XML-formatted data containing elements

representing each page as a separate Base64 encoded container. Clients that desire further information
regarding this special feature should contact eFax Developer’s Customer Support Group.

XSD (XML Schema Definition)

To ensure data integrity, the InboundRequest object can be set to validate the inbound request against a
client-side XSD schema. A sample schema is provided as part of the SDK.

eFax Developer™ Online Interface

Clients can change various inbound settings through eFax Developer™ online by clicking the “Settings”
icon located on any page of the interface. Go to https://secure.efaxdeveloper.com to log into the eFax
Developer™ online interface.

UserName and Password validation

eFax Developer™ will always send a username and password as part of the XML POST. As an additional
security measure, clients may change their XSD appropriately to validate the username and password.
Clients that perform username and password validation will be responsible for keeping their XSD in sync
with any username and password changes made online via the eFax Developer™ online interface.

Product Integration
Integration Requirements

Applications that use the com.efaxdeveloper.util-2.0.x API must meet the following requirements.
e JDK 1.5 or greater is required

e Apache Commons Codec 1.6 or later (commons-codec-1.6.jar is included with our SDK
package)

Integration Planning

To successfully integrate with eFax Developer™, it is important to have the appropriate tools as well as a
project plan prior to attempting integration. The following is provided to assist you in the integration
planning process.

e Contact eFax Developer™ Support to set up your account. Optional barcode recognition
and/or user defined field handling should be discussed if desired.

e Log into the eFax Developer™ online interface to set your inbound settings as desired

e Unzip the SDK into a folder of your choosing

® Add the com.efaxdeveloper.util-2.0.x.jar and commons_codec-1.6.jar to your CLASSPATH
e Carefully review this documentation, sample code and Javadoc found within the SDK folder
e Develop the client-side process to receive the XML POST

e Test your application’s integration with eFax Developer™

e Make your application live

Programming

Client-Side Programming Overview

The following is provided as a high-level overview of expected client-side processing.

Create an application that accepts a URL-encoded HTTP(S) POST containing a single
name/value pair where the parameter name equals “xml” and the parameter value contains the
XML-formatted data. Pass the XML-formatted data to an instance of the InboundRequest
object. Retrieve the fax data using the object’s various getter methods. Generate an HTML
response of “Post Successful” back to eFax Developer™.

Using eFax Developer’s InboundRequest object

The following is provided as a more in-depth overview of the expected client-side processing.

Retrieve the “xml” parameter from the HTTP(S) POST as you would normally do in your
application environment.

Establish a print output as you would normally do to send a response to a browser.

Instantiate the InboundRequest object using the appropriate constructor method. During client
testing, constructor methods that accept file input can be used to read XML from a specified
file. Sample XML is included as part of this SDK for client reference and testing.

Use the InboundRequest accessor/getter methods to retrieve the fax specific data. Please
review the upcoming section regarding Accessor Method Mapping.

Clients with user defined fields can retrieve them from the getUserFields() accessor method.
The getUserFields() method will return a Map which can be spun through to retrieve the user
defined field name/value pairs received.

Clients set to interpret barcodes can retrieve them from the getBarcodes() accessor method.
The getBarcodes() method will return an ArrayList of one-to-many Barcode objects. The
ArrayList can be processed to retrieve and store information specific to each barcode image.

Use the “getDocumentAsFile (String documentPath)” method when a physical copy of the fax
document is desired. The “getDocumentAsFile (String documentPath)” method will write the
physical file to the specified path. The file will be written using the fax name and file type
returned in the XML POST. All “getDocumentAsXXXX()” calls are optionally used by
clients who wish to store a copy of the physical fax on their server.

Clients with page splitting turned on can use the “getPagesAsFiles (String pagePath)” method
when a physical copy of each fax page is desired. The “getPagesAsFiles (String pagePath)”
method will write each page of a physical fax to the specified path as its own file. Files will
be written using the fax name returned in the XML POST and a suffix representing the page
depicted. Calls to “getPagesAsFiles” or any “getPage AsXXXX()” methods are optionally
used by clients who wish to store a copy of the physical fax on their server.

Send an HTML response to the browser containing the string “Post Successful” anywhere in
the HTML body.

Date Format Specification

Dates returned from the InboundRequest object can be formatted as desired by the client process. A number
of easy to use preset values have been established. In addition to the following preset values, clients have
the ability to specify their own settings based on java.text.SimpleDateFormat syntax. The following listing
represents each preset date format code used by the InboundRequest object. Each example assumes an
input date of “01/01/2005 12:30:00 PM.”

DF_01 will return “01/01/2005 13:30:00” (this is the default)
DF_02 will return “01/01/2005 13:30”

DF_03 will return “01/01/2005 12:30:00 PM”

DF_04 will return “01/01/2005 12:30 PM”

DF_05 will return “01/01/2005”

DF_06 will return “2005/01/01 13:30:00”
DF_07 will return “2005/01/01 13:30”
DF_08 will return “2005/01/01 12:30:00 PM”
DF_09 will return “2005/01/01 12:30 PM”
DF_10 will return “2005/01/01”

DF_11 will return “January 1, 2005 13:30:00”
DF_12 will return “January 1, 2005 13:30”
DF_13 will return “January 1, 2005 12:30:00 PM”
DF_14 will return “January 1, 2005 12:30 PM”
DF_15 will return “January 1, 2005”

DF_16 will return “Jan 1, 2005 13:30:00”
DF_17 will return “Jan 1, 2005 13:30”
DF_18 will return “Jan 1, 2005 12:30:00 PM”
DF 19 will return “Jan 1, 2005 12:30 PM”
DF_20 will return “Jan 1, 2005”

Method Mapping

Accessor Method Mapping (InboundRequest Object)

Method Returns Length Description/Values
getAccountID() String 10 eFax Developer™ account
identifier.
getANI() String 25 The automatic number

identification (caller id)
contains the calling party’s fax
number.

getBarcodes() ArrayList N/A The ArrayList will contain
one-to-many Barcode objects.

getBarcodesByPage(int page) ArrayList N/A The ArrayList will contain
one-to-many Barcode objects
from the specified page.

getBarcodesRead() String 5 The number of barcodes
successfully interpreted within
the inbound fax document.

getCSID() String 50 The station identifier, when
supplied by the receiving fax
machine upon successful
transmission.

getDateReceivedAsDate() Date N/A The original fax received date
returned as a Date object.

Pacific Time Zone

getDateReceivedAsString() String 19 The original fax received date
in “MM/dd/yyyy HH:mm:ss”
(24 hour) default format.

Pacific Time Zone

getDateReceived AsString(String format) String Varies The original fax received date
in the specified date format.

Pacific Time Zone

getDocumentAsBase64() String Varies A Base64 encoded string
representation of the files
contents.

Clients with page splitting will
call the getPage AsBase64()
method instead.

10

Method

Returns

Length

Description/Values

getDocumentAsBytes()

byte(]

Varies

A byte[] array representation
of the files contents.

Clients with page splitting will
call the getPage AsBytes()
method instead.

getDocumentAsFile(String documentPath)

void

N/A

Upon successful completion, a
file will be created within the
designated path using the file
name and file type received in
the XML POST.

Clients with page splitting will
call the getPagesAsFiles()
method instead.

getFaxName()

String

50

The actual fax name given to
this fax by eFax Developer™
as changed by the client.

getFileType()

String

“pdf’
“tif’

The document type as stored
based on the “Inbound File
Format” setting.

getMCFID()

String

eFax Developer™ fax ID.

getNumberDialed()

String

10

The fax number that was
dialed.

getPageAsBase64(int page)

String

Varies

A Base64 encoded string
representation of the page
number specified.

getPageAsBytes(int page)

byte(]

Varies

A byte[] array representation
of the page number specified.

getPageAsFile(String pagePath, int page)

void

N/A

Upon successful completion, a
file will be created within the
designated path for the page
number specified.

getPageCount()

String

The number of pages received.

getPagesAsFiles(String pagePath)

void

N/A

Upon successful completion, a
file will be created within the
designated path for each page
of the physical fax.

getPassword()

String

50

User Password

11

Method

Returns

Length

Description/Values

getRequestDateAsDate()

Date

N/A

The XML generation date
returned as a Date object.

Pacific Time Zone

getRequestDateAsString()

String

19

The XML generation date in
“MM/dd/yyyy HH:mm:ss” (24
hour) default format.

Pacific Time Zone

getRequestDateAsString(String format)

String

Varies

The XML generation date in
the specified date format.

Pacific Time Zone

getRequestType()

String

15

“New Inbound”
“Manual Repost”

The type of request that
generated the XML POST.

getStatus()

String

Numeric field indicating the
fax status. “0” indicates a
successful transmission while
all other values indicate an
error code which can be cross-
referenced with am eFax
Developer™ supplied table.

getUserFields()

Map

N/A

The Map object contains user
field name/value pairings.

getUserFieldsRead()

String

The number of user field
name/value pairs returned.

getUserName()

String

50

User Name

hasBarcodes()

Boolean

N/A

The Boolean value received
indicates whether or not
barcodes where returned.

hasUserFields()

Boolean

N/A

The Boolean value received
indicates whether or not user
fields where returned.

isPageSplitting()

Boolean

N/A

The Boolean value received
indicates whether or not page
splits were returned.

12

Accessor Method Mapping (Barcode Object)

Method Returns Length Description/Values
getKey() String Varies The interpreted barcode value
getReadSequence() String 3 A per-page sequence number

given to each barcode as it is
read on a given page.

getReadDirection() String 50 “2-Dimentional”
“Left/Right”
“Top/Bottom”
“Right/Left”
“Bottom/Top”

The read direction used to
interpret the barcode stored
within this container.

getSymbology() String 30 The symbology or protocol
used to generate the barcode
stored within this container.

getPageNumber() String 5 The physical page location of
the barcode stored within this
container.
getXStartPointA () String 8 Coordinate grid x-axis for
starting edge point A.
getYStartPointA () String 8 Coordinate grid y-axis for
starting edge point A.
getXStartPointB() String 8 Coordinate grid x-axis for
starting edge point B.
getYStartPointB() String 8 Coordinate grid y-axis for
starting edge point B.
getXEndPointA() String 8 Coordinate grid x-axis for
ending edge point A.
getYEndPointA() String 8 Coordinate grid y-axis for
ending edge point A.
getXEndPointB() String 8 Coordinate grid x-axis for
ending edge point B.
getYEndPointB() String 8 Coordinate grid y-axis for
ending edge point B.

13

Code Samples

Parsing Inbound Request (General Flow)

public void doGet(HttpServletRequest request, HttpServletResponse response)

}

throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

// Begin building the HTML response

out.println("<html>");
out.println("<head><title>InboundRequestServlet</title></head>");
out.println("<body>");

// Retrieve the inbound "xml" parameter value from the request
String xml = request.getParameter("xml");

try {
// Establish a new InboundRequest instance

InboundRequest req = new InboundRequest(xml);

// Once the InboundRequest instance has been established, various

// Metadata elements can be retrieved by your processing. A number of
// options are available to you based on your account settings. At any
// point, your process can reject the request by throwing an Exception.

// When barcode fields have been passed (optional account setting)
if (req.hasBarcodes()) {
// Process barcodes (see Parsing for Barcode Metadata)

}

// When user defined fields have been passed (optional account setting)
if (req.hasUserFields()) {
// Process user defined fields (see Parsing for User Defined Fields)

}

// If the inbound request passes your validation, respond back to eFax
// Developer™ with a "Post Successful”
out.println("<p>Post Successful</p>");

}
catch (Exception e) {

out.println("<p>Post Failed!</p>");
}
catch (Error err) {
out.println("<p>Post Failed!</p>");
¥
finally {
out.println("</body></html>");
out.flush();
out.close();

}

© 2014 2 Global, Inc. All rights reserved. 14
J2® is a registered trademark of j2 Global, Inc.

Parsing for Inbound Metadata

// Retrieve the inbound "xml" parameter value from the request

String xml = request.getParameter("xml");

try {

// Establish a new InboundRequest instannce

InboundRequest req = new InboundRequest(xml);

// Parse the InboundRequest

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

}

out.
out.
out.
out.
out.
out.
out.

out

out

println("UserName:
println("Password:
println("RequestDate:
println("RequestType:
println("AccountID:

println("NumberDialed:
println("DateReceived:
.println("FaxName:

out.
out.
out.
.println("ANI:
out.
out.

println("FileType:
println("PageCount:
println("CSID:

println("Status:
println("MCFID:

catch (Exception e) {}
catch (Error err) {}

}

ST I T T T T T T T S

req.
req.
req.
req.
.getAccountID());

req

req.
.getDateReceivedAsString());
req.
req.
req.
req.
.getANI());

req

req

req.
.getMCFID());

req

getUserName());
getPassword());
getRequestDateAsString());
getRequestType());

getNumberDialed());
getFaxName());
getFileType());
getPageCount());
getCSID());

getStatus());

15

}

Parsing for Binary Image

// Retrieve the inbound "xml" parameter value from the request
String xml = request.getParameter("xml");

try {

// Establish a new InboundRequest instannce
InboundRequest req = new InboundRequest(xml);

// When the client account does not return page splits (most likely)

if (!req.isPageSplitting()) {
// Decode the Base64 encoded document to a specified location. The
// file will be stored to your specified path using the fax name
// retrieved from the XML POST FaxName parameter. Note that you are
// providing a directory path to a location where you would like the
// physical file to be written. The following method call is not
// required. If the following method is not called, a hard copy of the
// physical image will not be generated on your server.
req.getDocumentAsFile("C:\\testXML\\");

}

// Otherwise, the client account is set to return page splits

else {
// Write each page to a specified file path
req.getPagesAsFiles("C:\\testXML\\");

}

}
catch (Exception e) {}
catch (Error err) {}

© 2014 2 Global, Inc. All rights reserved. 16
J2® 1s a registered trademark of j2 Global, Inc.

Parsing for Barcode Metadata

"

// Retrieve the inbound "xml" parameter value from the request
String xml = request.getParameter("xml");

try {

// Establish a new InboundRequest instannce
InboundRequest req = new InboundRequest(xml);

// When barcode fields have been passed (optional account setting)
if (reqg.hasBarcodes()) {

// Establish a null Barcode reference
Barcode b = null;

// Establish a new ArraylList object to hold all Barcode objects. Use
// the getBarcodesByPage(int) method to return all Barcode objects
// from a specified page.
ArraylList<Barcode> bars = new ArraylList<Barcode>(req.getBarcodes());
// Establish an iterator Object
Iterator<Barcode> iterator = bars.iterator();
// Process each Barcode object
while (iterator.hasNext()) {

// Retrieve a Barcode object

b = new Barcode(iterator.next());

// Retrieve the Barcode object state

System.out.println("Key: " + b.getKey());
System.out.println("ReadSequence: " + b.getReadSequence());
System.out.println("ReadDirection: " + b.getReadDirection());
System.out.println("Symbology: " + b.getSymbology());
System.out.println("PageNumber: " + b.getPageNumber());
System.out.println("XStartPointA: " + b.getXStartPointA());
System.out.println("XStartPointB: " + b.getXStartPointB());
System.out.println("YStartPointA: " + b.getYStartPointA());
System.out.println("YStartPointB: " + b.getYStartPointB());
System.out.println("XEndPointA: " + b.getXEndPointA());
System.out.println("XEndPointB: " + b.getXEndPointB());
System.out.println("YEndPointA: " + b.getYEndPointA());
System.out.println("YEndPointB: " + b.getYEndPointB());
}
}

}

catch (Exception e) {}

catch (Error err) {}

}
© 2014 2 Global, Inc. All rights reserved. 17

J2® is a registered trademark of j2 Global, Inc.

Parsing for User Defined Fields

"

// Retrieve the inbound "xml" parameter value from the request
String xml = request.getParameter("xml");

try {

// Establish a new InboundRequest instannce
InboundRequest req = new InboundRequest(xml);

// When user defined fields have been passed (optional account setting)
if (req.hasUserFields()) {

// Establish a TreeMap object to hold the user name/value pairs
Map<String, String> userFields =

new TreeMap<String, String>(req.getUserFields());
// Store the TreeMap contents to an ArraylList object for sorting
List<String> keys = new ArraylList<String>(userFields.keySet());
// Establish an Iterator object for the List object
Iterator<String> iterator = keys.iterator();
// Establish a String object to hold the user field name

String fieldName = "";
// Establish a String object to hold the user field value
String fieldValue = "";

// Spin through the list of user name/value pairs
while (iterator.hasNext()) {
// Store the field name value
fieldName = iterator.next();
// Store the field value
fieldValue = userFields.get(fieldName);
// Print the user name/value pairs received in the XML
System.out.println(fieldName + ": " + fieldValue);

catch (Exception e) {}
catch (Error err) {}

© 2014 2 Global, Inc. All rights reserved. 18
J2® is a registered trademark of j2 Global, Inc.

